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Abstract

Background: Stepped wedge cluster randomised trials frequently involve a relatively small number of clusters. The
most common frameworks used to analyse data from these types of trials are generalised estimating equations and
generalised linear mixed models. A topic of much research into these methods has been their application to cluster
randomised trial data and, in particular, the number of clusters required to make reasonable inferences about the
intervention effect. However, for stepped wedge trials, which have been claimed by many researchers to have a
statistical power advantage over the parallel cluster randomised trial, the minimum number of clusters required has
not been investigated.

Methods: We conducted a simulation study where we considered the most commonly used methods suggested
in the literature to analyse cross-sectional stepped wedge cluster randomised trial data. We compared the per cent
bias, the type I error rate and power of these methods in a stepped wedge trial setting with a binary outcome,
where there are few clusters available and when the appropriate adjustment for a time trend is made, which by
design may be confounding the intervention effect.

Results: We found that the generalised linear mixed modelling approach is the most consistent when few clusters
are available. We also found that none of the common analysis methods for stepped wedge trials were both
unbiased and maintained a 5% type I error rate when there were only three clusters.

Conclusions: Of the commonly used analysis approaches, we recommend the generalised linear mixed model for
small stepped wedge trials with binary outcomes. We also suggest that in a stepped wedge design with three
steps, at least two clusters be randomised at each step, to ensure that the intervention effect estimator maintains
the nominal 5% significance level and is also reasonably unbiased.
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Background
Cluster randomised trials (CRTs) have become common-
place in health-related research and have been applied to
a wide range of interventions [1]. The defining feature of
the CRT is the randomisation of groups of individuals
(termed clusters hereafter) rather than individual ran-
domisation. As a result of this feature, the outcomes for
individuals within clusters are likely to be correlated and
the statistical analysis must take this into account.
Stepped wedge CRTs (SW-CRTs) are a variant of CRTs

in which all clusters begin in the control phase and end in
the intervention phase, and different clusters switch from
control to intervention at different time points in random
order. The stepped wedge design has been employed with
increasing frequency in recent years and a recent system-
atic review reported that the number of SW-CRTs publi-
cations had increased substantially since 2010 [2].
In addition to adjusting for clustering, the analysis of a

SW-CRT must consider the potential confounding effect
of time, which is an unavoidable product of the study
design if there is change in the outcome over time inde-
pendent of the intervention effect [3–7]. For example, if
the incidence of a disease decreases over time independ-
ently of the intervention, then failure to adjust for time
would result in a biased estimate of the treatment effect.
This is because randomisation into a SW-CRT causes an
association between the intervention and time via an in-
crease in the number of clusters allocated to the interven-
tion as the study progresses. Despite the need to include
time as a covariate defined a priori in the main analysis of
a SW-CRT, there has been little investigation into the im-
pact of adjusting for time on the power of the study, with
the exception of the work by Baio et al. [8]. It has been
suggested that a SW-CRT will require fewer clusters than
a parallel CRT [7, 9–11] and recent literature has shown
that this is indeed the case when the intra-cluster correl-
ation coefficient (ICC) is high and clusters are large [12].
This is perhaps one of the reasons for the increased use of
the SW-CRT in recent years [2, 13].
The problems with the different methods of analysis

when there are few clusters in a CRT are well docu-
mented. For example, the robust variance estimator (RVE)
used in the generalised estimating equation (GEE) frame-
work underestimates the variance when there are fewer
than 40 clusters [14–17] and it is recommended that gen-
eralised linear mixed models (GLMMs) have at least 10
clusters to properly estimate random effects [18]. In con-
trast, the minimum number of clusters required for rea-
sonably unbiased estimation of the intervention effect in
SW-CRTs is under-explored. This is especially pertinent
because 45% of SW-CRTs in the review by the authors of
this manuscript [13] had fewer than ten clusters. Further-
more, we noted in our review of this work that 62% of
SW-CRTs used a binary measure as the primary outcome.

Arising from this are two logical questions. First,
which of the currently used methods of analysis is best
for an SW-CRT with a binary outcome when the num-
ber of clusters is small? Second, what is the minimum
number of clusters required for the consistent and un-
biased estimation of the treatment effect in a SW-CRT?
To help answer these questions we present a simulation
study for a SW-CRT with a binary outcome, with the
simulation study designed according to the guidelines pro-
vided by Burton et al. [19]. The study is organised into
three parts: first we describe in detail the simulation pro-
cedures and methods for generating the data based on a
beta binomial model, second we describe the scenarios
under investigation and third we briefly review the candi-
date methods that are most often employed to analyse the
data from “standard” parallel CRTs or SW-CRTs. We then
present the results of these simulations with emphasis on
the bias, type I error rate and power for each method.
Finally we discuss the implications of these results with
special reference to smaller SW-CRTs.

Methods
Simulation aims
The goal of the simulation study was to examine the mini-
mum number of clusters needed for a SW-CRT with a
binary outcome by comparing the bias, type I error rate
and power of commonly used analysis techniques under a
range of plausible scenarios.

Simulation procedures
Data sets were simulated based on a SW-CRT with three
different intervention time points (steps) and four meas-
urement periods. Prior to the first measurement period all
the clusters are in the control condition and prior to each
subsequent measurement period a third of the clusters are
randomly selected to switch from the control to the inter-
vention condition, until at the fourth measurement period
all clusters are in the intervention condition. For each
simulated data set the intervention effect was estimated
by all the candidate analysis methods and their perform-
ance compared. The candidate methods and each of the
scenarios conditions are described below.
SAS 9.3 software was used to generate and analyse the

data. Where random number generation is required the
‘RAND’ series of functions was used. To create independ-
ent data sets for each replication, the starting seed was
chosen such that no two replications contain repeats,
which for the RAND functions occur after every 219937–1
generations. Simulations that produced data sets in which
there were no events of interest in any of the clusters
when they were in the control condition were discarded
and rerun with new starting seeds. Similarly simulations
that produced data sets in which there were no events of
interest in any of the clusters when they were in the
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intervention condition were also discarded and rerun. In
practice, discarded data sets were a very rare occurrence.

Methods for generating data
Consider a cross-sectional SW-CRT with four measure-
ment periods and three steps for comparing a new inter-
vention to a control condition. Let Yijk be a binary
outcome with Yijk = 1 defining the event of interest and
Yijk = 0 otherwise for the ith subject (i = 1,…,N) at the jth

time (j = 0,1,2,3) in the kth cluster (k = 1,…,M). Let Xjk be
the treatment indicator (1 = intervention; 0 = control) for
the kth cluster at the jth time.
The first step in generating the data was to randomly

sample the ‘true’ (i.e. population) cluster proportions from
a beta distribution. Therefore baseline cluster proportions
(p0k) were selected such that:

p0k e Beta a; bð Þ

To ensure the data are correlated at the cluster level
with a fixed ICC (ρ) and mean (μ), the parameters a and
b in the beta distribution were obtained by solving the
simultaneous equations [20]:

E p0k½ � ¼ μ ¼ a
aþb

ρ ¼ 1
aþ bþ 1

The post-baseline ‘true’ cluster proportions (pjk) were
then generated such that:

pjk ¼
eβok þ β1Xjk þ β2j

1þ eβok þ β1Xjk þ β2j

where β1 is the log odds ratio of the intervention effect
and β2 is the log odds ratio of the effect at time j + 1
compared to time j. The parameter β0k is equal to the
logit of the baseline cluster proportions (p0k):

β0k ¼ log
p0k

1−p0k

� �
The final step was to generate njk independent subjects

in each cluster k at each time j, which we refer to as the
cell size from here on. These subjects have outcomes Yijk
generated according to a Bernoulli distribution with
probability pjk:

Y ijk e Bernoulli pjk
� �

Since this was a cross-sectional SW-CRT, repeated
measurements were not made on the same subjects
within a cluster and there was therefore no serial correl-
ation at the level of the individual, as would be expected
in a cohort SW-CRT. For the purpose of generating our

SW-CRT data, we have assumed that different measure-
ment times from the same cluster are exchangeable.

Scenarios under investigation
We simulated the data by expanding upon the procedures
used by Ukoumunne et al. [21] to a SW-CRT scenario.
We used a mean baseline control proportion E[p0k] of 0.1
and an intervention effect odds ratio of 2.25, which corre-
sponds to a doubling of the proportion to 0.2. When a
time trend was added to the data the value of the odds ra-
tio for time j + 1 relative to time j was 1.227. We chose
these values to represent a trial with a moderately large
intervention effect, similarly to trials we reviewed previ-
ously [22–24], with the addition of a relatively smaller
time trend. When a time trend was not required the odds
ratio for time was set to one. We examined the scenarios
in which the number of clusters randomised was 3, 6, 9,
18 and 36. These numbers were chosen such that situa-
tions with very few clusters were represented and so that
each “step” had the same number of clusters switching
from control to intervention condition. For each of these
scenarios we generated data sets using cell sizes of 5, 10,
50 or 100 subjects and a baseline ICC of 0.01, 0.05 and
0.1 because most CRTs have an ICC within this range
[25–27]. To estimate the type I error rate for each
method, all the above simulations were repeated using
an intervention effect odds ratio of one. In total, 240
scenarios using the three-step SW-CRT (referred to as
scenario A hereafter) were investigated (5 number of
clusters * 4 cluster size * 2 time effects * 3 ICCs * 2
intervention effects) with 2000 data sets being gener-
ated for each scenario so that estimated power and type
I error rates have standard errors of approximately
0.009 and 0.005 respectively.
To expand on the range of scenarios we performed

additional simulations on a SW-CRT with six steps,
which we shall refer to as scenario B below. To keep the
number of clusters divisible by the number of steps we
chose 6, 12, 18 and 36 clusters. For each of these we
used cell sizes of 5, 10, 25 or 50 and a baseline propor-
tion of 0.2. To simulate a trial with weaker intervention
and time effects, we used an intervention effect odds ra-
tio of 1.33 and a time effect odds ratio of 1.03.

Review of candidate methods
The candidate methods were chosen because of their
widespread application to the analysis of SW-CRTs [28].
Methods included logistic regression within a GEE
framework, logistic regression within a GLMM frame-
work and logistic regression with cluster (k) included as
a fixed effect, which from this point onwards shall be re-
ferred to as the fixed effects method. As suggested by
Hussey and Hughes we also used a linear mixed model
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(LMM) based on summary data (i.e. mean probability)
from each cluster at each time point [29].

Generalised Linear Mixed Model (GLMM) approach
GLMMs are an extension to generalised linear models
(GLMs) for analysing correlated data [30]. The term
mixed arises because these models estimate both fixed
effects, which are the deterministic part of the model
forming the regression line and random effects, which in
the context of CRTs estimate the stochastic variation of
individual clusters around the conditional mean of the
clusters.
The GLMM for the binary responses in the simulated

data is:

logit E Y jk
� �� 	 ¼ log

pjk
1−pjk

 !
¼ β0 þ a0k þ β1Xjk þ β2j

where a0k is a normally distributed random intercept at
the level of the cluster. Gauss-Hermite quadrature with
four quadrate points was used to approximate the model
likelihood function. The null hypothesis for fixed effects
parameters from these models was tested using a Wald
test compared to a t distribution where the degrees of
freedom were calculated using the containment approxi-
mation [31], which is the default method in SAS PROC
GLIMMIX. We note here that compared to the data
generation method, which simulated baseline cluster
probabilities from a beta distribution, this model is miss-
specified since it assumes the random intercept is nor-
mally distributed. We did this because in practice the true
baseline distribution is likely to be unknown and most re-
searchers will fit a model that assumes the random inter-
cept will have a normal distribution. We would argue that
in many situations when the outcome is binary and there
is a real difference between clusters at baseline, the distri-
bution of the true cluster proportions is just as likely to be
from a beta distribution as it is to be from a normal distri-
bution and therefore we were interested in how the model
performed despite this limitation [13].

Generalised Estimating Equation (GEE) approach
The GEE framework to GLM was first introduced by
Liang and Zeger in 1986 [32]. Since then it has become
a popular choice for the analysis of data from CRTs and
longitudinal studies [33]. Unlike GLMMs, which model
the variance and covariance arising from correlated data
directly, the GEE method primarily aims to model the
population average while accounting for the correlation
indirectly. Variance estimates can either be model based,
where the covariance structure is specified by the user,
or utilise the RVE in addition to this. One advantage of
the RVE is that it converges to the correct value when

there are a sufficient number of clusters even when the
correlation structure is miss-specified [34]. However, it
is possible to improve the model efficiency (and hence
require fewer clusters) by correctly specifying the under-
lying correlation structure [35].
For every simulated data set we applied the following

GEE model:

logit E Y jk
� �� 	 ¼ log

pjk
1−pjk

 !
¼ β0 þ β1Xjk þ β2j

For this mean model, estimation of the parameters
and their variances utilised an exchangeable working
correlation structure. P-values for individual parameters
are based on the Wald test and were calculated using
the standard normal distribution, which is the default in
SAS PROC GENMOD when a repeated statement is
used.
Diggle et al. [35] showed that the population-level ef-

fect that is estimated by a marginal model, such as the
GEE above, will be closer to the null than the cluster
specific effect estimated by a GLMM, such as model (1).
This makes it difficult to compare GEE estimates with the
other methods because they are fundamentally estimating
different parameters. Neuhaus et al. [36] showed that for a
binary outcome, the estimate from a conditional model is
different from the estimate from a marginal model by a
factor of 1–ICC. For the purposes of comparison between
methods, we therefore estimate the cluster-specific esti-
mate from model (2) as:

β̂
�
1 ¼

β̂1

1−ρ

Fixed effects model specification
This method involves fitting a GLM with a fixed effect
for cluster. This fixed effect method is not generally con-
sidered a good model for CRT data because the variance
is underestimated unless the clusters sampled are the
only clusters that exist [37]. However, we included this
as a candidate method because it has been used to ana-
lyse recent SW-CRTs [38–42].
The general model for the individual binary responses

in the simulated data is written as:

logit E Y jk
� �� 	 ¼ log

pjk
1−pjk

 !
¼ β0 þ β1Xjk þ β2jþ β3I k ¼ 2ð Þ þ⋯

þ βMþ1I k ¼ Mð Þ

Null hypotheses of parameters in these models were
assessed using the default method is SAS PROC GEN-
MOD, which is a Wald test compared to a chi-squared
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distribution. I(k =M) is an indicator variable for cluster
M, taking the value 1 if k =M and 0 otherwise.

Cluster summaries model specification
The cluster summaries approach usually involves first
calculating the cluster mean and then performing a t-test
of those means to compare trial arms. In the context of
SW-CRTs Hussey and Hughes [29] proposed that the pro-

portion of “successes” πjk ¼
P

Y ijk

njk
for each cluster at

every time be calculated and then modelled using a linear
mixed model (LMM). For the simulated data we fit the
following model:

πjk ¼ β0 þ a0k þ β1Xjk þ β2j

The null hypothesis for the fixed effects parameters in
these models was also tested using a Wald test com-
pared to the t distribution with the default containment
degrees of freedom approximation [31]. An important
difference between this model and the models from the
other candidate methods is that parameter estimates from
(4) are interpreted as risk differences whereas the other
three candidate methods all estimate log odds ratios.

Method of time adjustment
In general the approach to adjusting for time trends in a
SW-CRT is to treat time as a categorical variable. In
models (1) to (4) above this amounts to replacing β2j
with a series of indicator variables for each time j > 0.
For example, model (1) fitted to scenario A would
become:

logit E Y jk
� �� 	 ¼ log

pjk
1−pjk

 !
¼ β0 þ a0k þ β1Xjk þ β2I j ¼ 1ð Þ

þ β3I j ¼ 2ð Þ þ β4I j ¼ 3ð Þ
For the sake of simplicity we have assumed in both the

generation and analysis of the data that the time trend is
linear. In addition to examining models (1) to (4), we
also examine the bias of these approaches when no at-
tempt is made to adjust for time in the modelling ap-
proach, i.e. models (1) to (4) excluding the β2j term.

Estimates of interest and evaluation criteria
Since the primary goal of the cluster RCT is to estimate
the intervention effect, the estimate of interest will be
the intervention effect parameter and its associated p-
value. For models (1) to (3), we calculated the bias as
the estimated log odds ratio minus the true log odds ra-

tio β̂1−β1 and the per cent bias as β̂1−β1
β1

� 100 to assess

how accurately the models estimate the intervention ef-
fect. For the cluster summary method the bias was

calculated as the estimated risk difference minus the true
risk difference (0.1 for scenario A and 0.05 for scenario
B). In all comparisons we used a significance level corre-
sponding to 5%; therefore the type I error rate was cal-
culated as the proportion of p-values that were less than
0.05 in the scenarios where the intervention effect was
set to null. The power was calculated as the proportion
of p-values that are less than 0.05 for the scenarios
where an intervention effect was present.

Results
Adjusting for time
To examine the consequence of failing to adjust for time
when a true time effect is present, Fig. 1 (and Additional
file 1) present the results of fitting models (1) to (4)
without the time covariate [i.e. incorrectly assuming
(β2 = 0)]. These figures show that all methods of analysis
are biased in every scenario when the time effect is ignored.

Bias
All intervention effect estimates were normally distrib-
uted; for the GEE, the GLMM and the fixed effects model
this was on the logit scale and for the cluster summaries
method this was on the proportion scale. When the
models did correctly adjust for time, the bias associated
with a particular method varied depending on the number
of individuals within a cluster, the number of clusters and
the magnitude of the ICC (Fig. 2, Additional file 2). For
scenario A the approach using cluster summary statistics
had approximately 20% bias when the ICC was 0.01 irre-
spective of the number of clusters but improved with an
increasing level of ICC. In scenario B this method had a
slight positive bias when the ICC was 0.01, which again re-
duced with increasing ICC, until it was consistently
underestimating the intervention effect when the ICC was
0.1 (Additional file 2). The GLMM approach had a large
positive bias when there were only three clusters and a cell
size of 10 or less but became the most consistent method
for unbiased estimation in both scenarios A and B when
there were more than six clusters (Fig. 2, Additional
file 2). The fixed effects model exhibited similar bias to
the GLMM except that the former was more biased
when the cell size was small. The GEE approach was
the least biased of all methods when there were only
three clusters, but when the ICC was 0.05 or greater,
the GEE slightly underestimated the true intervention
effect for larger cell sizes and greater numbers of clus-
ters (Fig. 2). For scenario B, GEE bias was almost iden-
tical to GLMM bias (Additional file 2).

Type I error rate
In general the type I error rate for all methods improved
toward the nominal 5% level as the number of clusters
and the cell size increased (Fig. 3, Additional file 3).
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Fig. 1 Per cent bias in the intervention effect estimate β̂1

� �
for models that fail to adjust for time. Estimates are obtained from fitting models (1)

to (4) without the time effect. Simulated data have three steps: a cell size equal to njk, a true intervention effect odds ratio of 2.25 and a time
effect odds ratio of 1.227

Fig. 2 Per cent bias in the intervention effect estimate β̂1

� �
for models that correctly adjust for time. Estimates are obtained from fitting models

(1) to (4). Simulated data have three steps, a cell size equal to njk, a true intervention effect odds ratio of 2.25 and a time effect odds ratio of 1.227
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Fig. 3 Type I error rate in the intervention effect estimate β̂1

� �
for models that correctly adjust for time. Estimates are obtained from fitting models

(1) to (4). Simulated data have three steps, a cell size equal to njk, a true intervention effect odds ratio of 1 and a time effect odds ratio of 1.227

Fig. 4 Power to detect the true intervention effect using a GLMM with and without adjustment for time. Estimates are obtained from fitting
model (1) with and without time as a covariate. Simulated data have three steps, a cell size equal to njk, a true intervention effect odds ratio of
2.25 and a time effect odds ratio of 1. Both models shown maintained a type I error rate of approximately 5%
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However, for scenario A, the cluster summaries method
was overly conservative regardless of the number of
clusters or the cell size when the ICC was 0.05 or more.
For scenario B this over-conservative tendency disap-
peared (Additional file 3). In both simulated SW-CRTs
the GEE suffered from an inflated type I error rate when
the number of clusters was nine or fewer, particularly
when the cell size was small. Compared to the GEE, the
GLMM had a comparatively less inflated type I error
rate (at worst 8% when there only 3 clusters) but for
both scenarios A and B the GLMM was most anticon-
servative when the ICC was 0.01, there were six clusters
or fewer and the cell sizes were 25 or more. For most
scenarios the fixed effects model had a type I error rate
of close to 5% but when there were only three clusters
and the cell size was five it was conservative.

Power
Adjusting for time when no time effect is present leads
to large losses in power for all of the analysis methods,

irrespective of the ICC. Figure 4 demonstrates this for
only the GLMM, but all methods showed a similar
pattern.
The GEE and GLMM were the most powerful methods

for most of the scenarios we simulated, reaching 80% and
90% power with fewer clusters and fewer subjects than the
other methods (Table 1, Additional file 4). For scenario A,
the fixed effects model compared favourably to the GEE
and GLMM when the cell size and ICC were large. How-
ever, when the cell size was ten or fewer and the ICC was
0.05 or less, it was the least powerful analysis approach.

Convergence failures
For scenario B none of the models failed to converge
and for scenario A there were no convergence failures
when there were more than nine clusters. The GLMM
and cluster summaries approach were the most reliable
models with the most convergence failures occurring
when there were only three clusters and a cell size of five
(8 and 6 failed respectively). Table 2 shows that the GEE

Table 1 Power to detect an intervention effect (OR = 2.25) in scenario A with different methods of analysis

ICC k njk True time effect OR = 1 True time effect OR = 1.227

GEE GLMM Cluster summaries method Fixed effects model GEE GLMM Cluster summaries method Fixed effects model

0.01 3 100 0.806 0.765 0.657 0.735 0.858 0.828 0.670 0.801

6 50 0.813 0.802 0.740 0.737 0.866 0.852 0.785 0.812

100 0.971 0.965 0.929 0.955 0.979 0.980 0.945 0.969

9 50 0.929 0.926 0.907 0.893 0.948 0.947 0.920 0.930

100 0.998 0.998 0.993 0.996 0.999 0.999 0.995 0.998

18 10 0.665 0.653 0.632 0.535 0.736 0.724 0.705 0.583

50 0.997 0.998 0.995 0.989 0.999 0.999 0.999 0.999

36 5 0.690 0.683 0.675 0.549 0.773 0.762 0.747 0.625

10 0.918 0.916 0.908 0.806 0.953 0.953 0.947 0.874

0.05 3 100 0.698 0.690 0.464 0.684 0.734 0.733 0.401 0.750

6 50 0.697 0.702 0.590 0.695 0.764 0.766 0.563 0.749

100 0.925 0.929 0.810 0.923 0.962 0.966 0.758 0.961

9 50 0.859 0.863 0.782 0.860 0.900 0.904 0.755 0.899

100 0.984 0.983 0.951 0.982 0.996 0.995 0.934 0.995

18 50 0.987 0.986 0.978 0.986 0.998 0.999 0.985 0.998

36 10 0.826 0.820 0.807 0.778 0.874 0.871 0.848 0.832

0.1 3 100 0.597 0.619 0.320 0.621 0.659 0.685 0.229 0.692

6 50 0.623 0.647 0.475 0.645 0.699 0.719 0.399 0.715

100 0.871 0.888 0.673 0.892 0.919 0.936 0.534 0.932

9 50 0.811 0.827 0.693 0.820 0.847 0.860 0.599 0.850

100 0.968 0.971 0.865 0.970 0.979 0.984 0.765 0.984

18 50 0.985 0.987 0.964 0.986 0.992 0.992 0.941 0.992

100 1.000 1.000 0.999 1.000 1.000 1.000 0.986 1.000

36 10 0.763 0.766 0.740 0.752 0.838 0.832 0.793 0.808

Only scenarios where at least one method had a power of between 0.7 and 1 are shown. Each estimate is based on 2000 simulations. All methods adjust for time
in the model
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and fixed effects models failed to converge much more
often in this same scenario (13% and 12.6% respectively)
and in general.

Discussion
Out of all the analysis methods tested on our simulated
data, we found that the GLMM approach with a random
intercept was often the best analysis approach. For all
values of the ICC it had a good type I error rate and bias
characteristics when compared to the other methods
while maintaining similar if not superior power despite
the distribution of the random intercept being miss-spe-
cified. The GLMM is not without its problems though; in
the scenarios we investigated, the bias was substantial
when only three clusters with cell sizes of ten or fewer, es-
pecially when the ICC was higher and there were few sub-
jects. When there were only 3 clusters and the cell sizes
were 50 or more, the bias of the GLMM was much less,
but the type I error rate was inflated. The major problems
with the GEE are the inflated type I error rate and conver-
gence failures when there are few clusters. If researchers
wish to use a GEE when there are few clusters then we
suggest that one of the corrections evaluated by Scott et
al. [43] be considered. When there are six clusters there is
some merit to the fixed effects modelling approach, which
was less biased and more conservative than corresponding
GLMMs when it converged.
In accordance with the literature on SW-CRT analysis

[4–7] these results demonstrate that if there is no at-
tempt to adjust for a time trend when one exists, the es-
timation of the intervention effect will be biased. While

this bias will depend on the magnitude of the time trend,
most often the presence and magnitude of any time
trend will be unknown. When a time trend is adjusted
for, it is more robust in general for it to be fitted as a
categorical variable rather than as a continuous variable,
which we have assumed for the sake of simplicity. The
decision of how to adjust for time in the analysis can be
informed by knowledge of the trial subject matter at
hand; however, we note that current methods for calcu-
lating the power/sample size of an SW-CRT do so based
on a model that adjusts for time as a categorical variable
rather than a continuous one so that the type I error rate
is correct [7, 29].
It is widely regarded that the SW-CRT is more power-

ful than a traditional cluster RCT [3, 7, 10, 11]. Although
this has now been proven to be not universally the case
[12], we suspect that this belief has contributed to the
large number of stepped wedge studies with very few
clusters. However, these same studies regularly use ei-
ther a GEE or GLMM modelling approach for binary
outcomes, which we have shown have at least one un-
desirable statistical property when there are few clusters.
We also point out that these simulations reflect an ideal
scenario where there are no missing data and the cluster
sizes are equal. There is the distinct possibility that the
number of clusters required will increase when the situ-
ation departs from these ideals or when the analysis in-
creases in complexity, such as when additional random
effects terms or interactions are added to the model.
There are also other problems with randomising very

few clusters, which apply to SW-CRTs and CRTs alike.

Table 2 Number of convergence failures per 2000 simulations of scenario A

ICC k njk True time effect OR = 1 True time effect OR = 1.227

GEE GLMM Cluster summaries method Fixed effects model GEE GLMM Cluster summaries method Fixed effects model

0.01 3 5 102 0 0 105 61 0 1 65

10 7 0 0 7 2 0 1 2

6 5 7 0 0 7 2 0 0 2

9 5 1 0 0 1 0 0 0 0

0.05 3 5 193 5 1 182 133 2 0 141

10 35 0 0 36 21 0 0 21

6 5 10 0 0 11 8 0 0 8

9 5 0 0 0 0 1 0 0 1

0.1 3 5 261 8 6 251 209 5 1 221

10 85 3 0 85 63 0 0 65

50 2 0 0 2 2 0 0 2

100 1 0 0 0 2 0 0 2

6 5 32 0 0 30 23 0 0 29

10 1 0 0 1 3 0 0 3

9 5 6 0 0 6 4 0 0 4

Only scenarios where at least one method had a convergence failure are shown. All methods adjust for time in the model
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As Taljaard et al. point out, results from trials with few
clusters may not be generalisable to wider populations
[44]. A related concern is that the benefit of randomisa-
tion is potentially lost as the balance of known and un-
known confounders depends on sufficient numbers of
clusters being randomised [44, 45].
Our study was limited by several factors. Due to com-

puting restraints, only 2000 data sets were simulated for
each scenario and much more stable estimates could be
obtained by using a larger number. The models we used
were simple and their suitability for analysing small SW-
CRTs varied. For example, the GEE we used was limited
by the default settings in PROC GENMOD, which do
not implement a degrees of freedom correction like the
one the GLMM model benefited from. We also made
the assumption that the correlation within a cluster is
exchangeable. It is very possible that this correlation
could in fact be autoregressive in some settings, in which
case none of the analysis methods presented here would
sufficiently control the type I error rate. Further research
into this subject is warranted. Another distinct possibil-
ity is that the time trend is not linear, as was assumed
above because the data were simulated as such. Fitting
time as a categorical variable will be required in the
event this assumption is not reasonable and in general
modelling time this way will give an unbiased estimate
of the intervention effect but may require more than six
clusters. Further research is needed to determine whether
the loss in power from such an approach is substantial.

Conclusion
In summary we recommend that SW-CRTs with a lim-
ited number of clusters and binary outcomes should be
analysed using a GLMM. Our strongest recommenda-
tion of all is that a cross-sectional SW-CRT with three
steps should not randomise fewer than six clusters and
that when few clusters are available there needs to be a
large number of subjects per cluster per time.
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